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Abstract

We trained a larg network 1o classify the 12 million
high-resolution images C-3010 contest iato the 1000 dif-
s clipen Ou e Test o, e achicve op-1 and o e
and 17.0% which is considerably better than the previous 1
newral network, which has 60 mullion parameters and 650,000
of five comolutional layers, some of which are followed by max-pool
and thre fully-connecied layers with a final 1000-way softmax. T

. deep comvoutional ne
he I

yers we employed a ety developed regularization method callo “deopot’
that proved 1o be very effective. We also entored a variant of this model in the

C-2012 competition and achicved a winning top-5 test en of 15.3%
% achieved by the second-best entry.
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nlle by varying thele depeh andheeacth, anc ey ase ake trong anc mosdly caeet assunprions
about the natuee of images (namely. statioarity of statistics and locality of pixel dependencics).
Thus, compared to standard feadiorwad neural networks with sinslzry-sized layers, CNNs have
much fewer conections and parameters and sothey are easier o trin, while their theoretically-best
perfomusace i likely o be uly worse
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Source: Linardatos, Pantelis, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. "Explainable ai: A review of machine learning interpretability methods." Entropy 23.1 (2020): 18.
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The Counterfactual Explanation

Original Instance

Country of origin

®E.SAD

' ™

L Colambia J

Type of goods

lx Bananas W
-

Met Mass

[ 7680Kg

Cost of goods

\ € 2 540 J

Why was a declaration predicted as fraudulent?

The minimal change in input that changes the
output.

“If the country of origin would change from
Colombia to USA and the type of goods from
bananas to avocados, the predicted class would
change from fraudulent to compliant.”

No limitations on complexity of the model



SHAP

Original Instance

— 3 = What is the influence of each feature on the
®D prediction score?
votomm SHAP . = Based on Game Theory
Countr of orign I Bananas
'd Colombia ) . . .
C ) I Colombis i
— l — - Explains score, not predicted class
P / - - : E“'“’?”'ﬂ"‘ = Can be biased
r’ 7 6BOD Kg -;" SHAP value (impact on model output)
.\_ € 2540 j.
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Counterfactual Explanations for Customs Fraud Detection
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Open Issues and Challenges XAl

= Which explanation method to use?

= How to choose among explanations: moral hazard
= What explanations do users want?

= Who should get access to explanations



