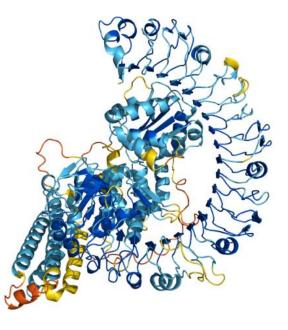


Explainable Techniques to Contribute to a more Fair and Transparent Tax Al

Dieter Brughmans


The complexity of AI

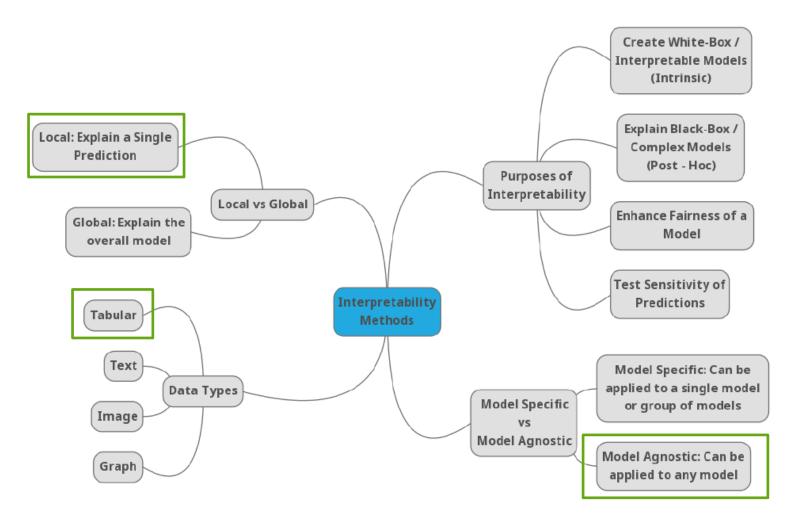
AlexNet

ImagaNat Cla	ssification with Deep Convolutional
iniageivet Cia	Neural Networks
Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca	Nya Sutskever Geoffrey E. Hinton University of Toronto University of Toronto ilya8cs.utoronto.ca hinton8cs.utoronto.ca
	Abstract
high-resolution image ferent classes. On the and 17.0% which is: neural network, whic of five convolutional and three fully-come ing faster, we used n tation of the convolut layers we employed a that proved to be ver II.SVRC-2012 comp	sep consolutional accurate latence to classify the 1.2 million is in the ImageNet LWRC-2010 contexts into the 1000 dif- test data, we achieved top-1 and top-5 error rates of 37.5% considerably birster than the previous usacce def-base. The second statistical second by the second second by the hypers, some of which are followed by max-pooling layers, net all lowers with a full of 00-way offmars. To make train- tion-stanzing meanors and a very efficient GPU implemen- ion operation. To reduce overfitting in the fully-connected recently-developed regularization method called "dopont" tion and achieves 4 which are followed by the second- tion and achieves 4 which are followed by the second- tion and achieves 4 which are followed by the second- base of the second-best entry.
1 Introduction	
prove their performance, we c ter texchiques for preventing c small — on the order of tens o CIFRA-10/100 [12]). Simple- especially if they are augment best error rate on the MNBST But objects in realistic setting necessary to use much larger t have been widely recognized (lect labeled datasets with milli consists of hundreds of thousa	comparison make oversital use of machine harming methods. To in- me collect larger datasets, learn more proceedin models, and use be- verfitting. Usual recently, datasets of labeled images are relatively fluorestication of the start of the start of the start of the start of with label-preserving transformations. For example, the current digitation coupling and the start of the start of the start digitation of the start of the start of the start of the start of the start of the start of the start of the start of the training start. And indeed, the shortcomings of small marge datasets one of mings. The new larger datasets include LabelMe (2), which one of marger, The new larger datasets include LabelMe (2), which one of marger. The new larger datasets include LabelMe (2), which start of the start of the start of the start of the start of the start start of the star
capacity. However, the immer lem cannot be specified even b of prior knowledge to comper (CNNs) constitute one such cli trolled by varying their depth a about the nature of images (n	jects from millions of images, we need a model with a large learning ne complexity of the object recognition task means that this prob- ary a dataset in large a magnWeb, ne would should also have been been as of models 116, 11, 13, 18, 15, 22, 26). Their capacity can be con- mostly and the state of the state of the state of the state and breakh, and they also make strong and mostly correct states and strong of statistics and locality of prior dependencies). Collebraud neural neutrotics with similarity-sized largers, Christiane

$61\ 000\ 000$

AlphaFold

ChatGPT



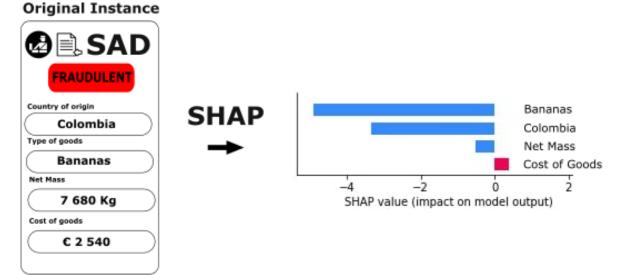
21 000 000

175 000 000 000

XAI Characteristics

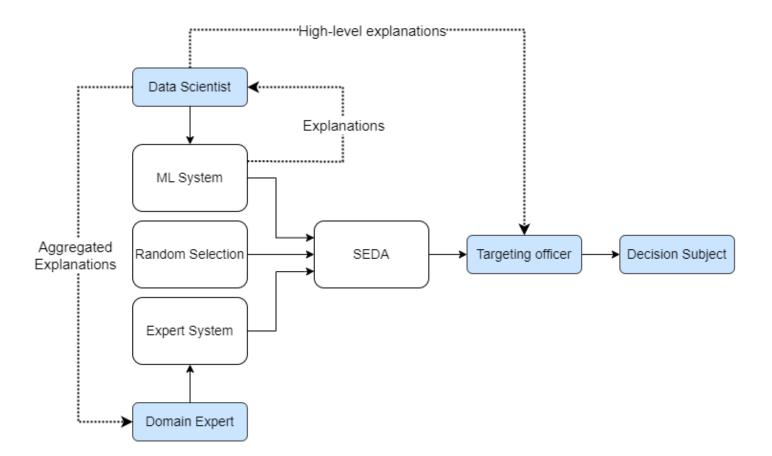
Source: Linardatos, Pantelis, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. "Explainable ai: A review of machine learning interpretability methods." Entropy 23.1 (2020): 18.

The Counterfactual Explanation


Original Instance

🕑 🖹 SAD
Country of origin
Type of goods
Bananas
7 680 Kg
Cost of goods
C 2 540

- Why was a declaration predicted as fraudulent?
- The minimal change in input that changes the output.
- "If the country of origin would change from Colombia to USA and the type of goods from bananas to avocados, the predicted class would change from fraudulent to compliant."
- No limitations on complexity of the model



- What is the influence of each feature on the prediction score?
- Based on Game Theory
- Explains score, not predicted class
- Can be biased

Counterfactual Explanations for Customs Fraud Detection

Data Scientist

- Model improvement
- Identify Trends

Targeting Officer

- High-level explanations
- Improve investigation time

Domain Expert

- Aggregated explanations
- New insights from data

Decision Subject

No explanations

Open Issues and Challenges XAI

- Which explanation method to use?
- How to choose among explanations: moral hazard
- What explanations do users want?
- Who should get access to explanations

