For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Prof. dr. E. (Evangelos) Kanoulas

Faculty of Science
Informatics Institute

Visiting address
  • Science Park 904
  • Room number: L5.57
Postal address
  • Postbus 94323
    1090 GH Amsterdam
  • Evangelos Kanoulas

    My research vision lies in pursuing research in the field of information retrieval, advancing the state-of-the-art on hard information seeking problems, and enabling the technological transfer of my research to real world applications. 

    The main focus of my research is building the necessary methods and technology to enable human – machine collaboration for retrieving information by

    1. obtaining a deeper understanding of user preferences and decisions during information seeking activities,
    2. developing algorithms that can interact with users during information seeking activities, and
    3. building the appropriate evaluation methodology to measure progress.

    At the same time, my research is driven by domains and applications in which information seeking remains a hard problem, including legal search (which I pursue at FEB - Amsterdam Business School) and medical search (which I persue in collaboration with Cochrane NL). 

    To achieve the aforementioned goals I am leading the Human-Machine Intelligence Lab (HuMIL), within the Informatics Institute and the ILPS group, and I have organized my research and research team around three axes:

    • Human-Machine Interactive Search Algorithms,
    • Benchmarks and Evaluation Methods, and
    • Applications in the Legal and Medical fields.
  • Publications

    2024

    • Abbasiantaeb, Z., Yuan, Y., Kanoulas, E., & Alian Nejadi, M. (2024). Let the LLMs Talk: Simulating Human-to-Human Conversational QA via Zero-Shot LLM-to-LLM Interactions. In The 17th ACM International Conference on Web Search and Data Mining
    • Huang, J. H., Zhu, H., Shen, Y., Rudinac, S., Pacces, A. M., & Kanoulas, E. (2024). A Novel Evaluation Framework for Image2Text Generation. In 1st Workshop on Large Language Model for Evaluation in Information Retrieval (LLM4Eval 2024) at SIGIR 2024 (Vol. 3752, pp. 51-65). (CEUR Workshop Proceedings).
    • Khan, O. S., Zhu, H., Sharma, U., Kanoulas, E., Rudinac, S., & Jónsson, B. Þ. (2024). Exquisitor at the Video Browser Showdown 2024: Relevance Feedback Meets Conversational Search. In S. Rudinac, A. Hanjalic, C. Liem, M. Worring, B. Þ. Jónsson, B. Liu, & Y. Yamakata (Eds.), MultiMedia Modeling : 30th International Conference, MMM 2024, Amsterdam, The Netherlands, January 29-February 2, 2024 : proceedings (Vol. IV, pp. 347–355). (Lecture Notes in Computer Science; Vol. 14557). Springer. https://doi.org/10.1007/978-3-031-53302-0_31 [details]
    • Krasakis, A. M., Yates, A., & Kanoulas, E. (2024). Contextualizing and Expanding Conversational Queries without Supervision. ACM Transactions on Information Systems, 42(3), Article 77. https://doi.org/10.1145/3632622 [details]
    • Voorveld, H. A. M., Panteli, A., Schirris, Y., Ischen, C., Kanoulas, E., & Lentz, T. (2024). Examining the persuasiveness of text and voice agents: prosody aligned with information structure increases human-likeness, perceived personalisation and brand attitude. Behaviour and Information Technology. Advance online publication. https://doi.org/10.1080/0144929X.2024.2420871
    • Zhu, H., Huang, J. H., Rudinac, S., & Kanoulas, E. (2024). Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models. In ICMR 2024 - Proceedings of the 2024 International Conference on Multimedia Retrieval (pp. 978-987). (ICMR 2024 - Proceedings of the 2024 International Conference on Multimedia Retrieval). Association for Computing Machinery, Inc. https://doi.org/10.1145/3652583.3658032

    2023

    • Askari, A., Aliannejadi, M., Abolghasemi, A., Kanoulas, E., & Verberne, S. (2023). CLosER: Conversational Legal Longformer with Expertise-Aware Passage Response Ranker for Long Contexts. In CIKM '23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management : October 21-25, 2023, Birmingham, England (pp. 25-35). Association for Computing Machinery. https://doi.org/10.1145/3583780.3614812 [details]
    • Askari, A., Aliannejadi, M., Kanoulas, E., & Verberne, S. (2023). A Test Collection of Synthetic Documents for Training Rankers: ChatGPT vs. Human Experts. In CIKM '23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management : October 21-25, 2023, Birmingham, England (pp. 5311-5315). Association for Computing Machinery. https://doi.org/10.1145/3583780.3615111 [details]
    • Bhargav, S., Aliannejadi, M., & Kanoulas, E. (2023). Market-Aware Models for Efficient Cross-Market Recommendation. In J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kruschwitz, & A. Caputo (Eds.), Advances in Information Retrieval: 45th European Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023 : proceedings (Vol. I, pp. 134-149). (Lecture Notes in Computer Science; Vol. 13980). Springer. https://doi.org/10.1007/978-3-031-28244-7_9 [details]
    • Capurro, C., Provatorova, V., & Kanoulas, E. (2023). Experimenting with Training a Neural Network in Transkribus to Recognise Text in a Multilingual and Multi-Authored Manuscript Collection. Heritage, 6(12), 7482-7494. https://doi.org/10.3390/heritage6120392 [details]
    • Ghasemi, N., Aliannejadi, M., Bonab, H., Kanoulas, E., de Vries, A. P., Allan, J., & Hiemstra, D. (2023). Cross-Market Product-Related Question Answering. In SIGIR '23: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval : July 23-27, 2023, Taipei, Taiwan (pp. 1293-1302). Association for Computing Machinery. https://doi.org/10.1145/3539618.3591658 [details]
    • Pal, V., Yates, A., Kanoulas, E., & de Rijke, M. (2023). MultiTabQA: Generating Tabular Answers for Multi-Table Question Answering. In A. Rogers, J. Boyd-Graber, & N. Okazaki (Eds.), The 61st Conference of the Association for Computational Linguistics: Proceedings of the Conference : ACL 2023 : July 9-14, 2023 (Vol. 1, pp. 6322–6334). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.acl-long.348 [details]
    • Yin, H., Sun, Y., Xu, G., & Kanoulas, E. (2023). Trustworthy Recommendation and Search: Introduction to the Special Issue - Part 1. ACM Transactions on Information Systems, 41(3), Article 51. https://doi.org/10.1145/3579995
    • Yin, H., Sun, Y., Xu, G., & Kanoulas, E. (2023). Trustworthy Recommendation and Search: Introduction to the Special Section-Part 2. ACM Transactions on Information Systems, 41(4), Article 82. https://doi.org/10.1145/3604776
    • Zou, J., Aliannejadi, M., Kanoulas, E., Pera, M. S., & Liu, Y. (2023). Users Meet Clarifying Questions: Toward a Better Understanding of User Interactions for Search Clarification. ACM Transactions on Information Systems, 41(1), Article 16. https://doi.org/10.1145/3524110 [details]
    • Zou, J., Sun, A., Long, C., Aliannejadi, M., & Kanoulas, E. (2023). Asking Clarifying Questions: To benefit or to disturb users in Web search? Information Processing and Management, 60(2), Article 103176. https://doi.org/10.1016/j.ipm.2022.103176 [details]

    2022

    • Azzopardi, L., Aliannejadi, M., & Kanoulas, E. (2022). Towards Building Economic Models of Conversational Search. In M. Hagen, S. Verberne, C. Macdonald, C. Seifert, K. Balog, K. Nørvåg, & V. Setty (Eds.), Advances in Information Retrieval: 44th European Conference on IR Research, ECIR 2022, Stavanger, Norway, April 10–14, 2022 : proceedings (Vol. II, pp. 31-38). (Lecture Notes in Computer Science; Vol. 13186). Springer. https://doi.org/10.1007/978-3-030-99739-7_4 [details]
    • Bhargav, S., Sidiropoulos, G., & Kanoulas, E. (2022). 'It's on the Tip of My Tongue': A New Dataset for Known-Item Retrieval. In WSDM '22: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining : February 21-25, 2022 : virtual event, Tempe, AZ, USA (pp. 48–56). Association for Computing Machinery. https://doi.org/10.1145/3488560.3498421 [details]
    • Jonk, P., de Vries, V., Wever, R., Sidiropoulos, G., & Kanoulas, E. (2022). Natural Language Processing of Aviation Occurrence Reports for Safety Management. In M. C. Leva, E. Patelli, L. Podofillini, & S. Wilson (Eds.), Proceedings of the 32nd European Safety and Reliability Conference (ESREL2022) (pp. 2015-2023). Research Publishing. https://doi.org/10.3850/978-981-18-5183-4_S05-06-449-cd [details]
    • Krasakis, A. M., Yates, A., & Kanoulas, E. (2022). Zero-shot Query Contextualization for Conversational Search. In SIGIR '22: proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval : July 11-15, 2022, Madrid, Spain (pp. 1880–1884). The Association for Computing Machinery. https://doi.org/10.48550/arXiv.2204.10613, https://doi.org/10.1145/3477495.3531769 [details]
    • Molinari, A., & Kanoulas, E. (2022). Transferring Knowledge between Topics in Systematic Reviews. Intelligent Systems with Applications, 16, Article 200150. https://doi.org/10.1016/j.iswa.2022.200150 [details]
    • Pal, V., Kanoulas, E., & de Rijke, M. (2022). Parameter-Efficient Abstractive Question Answering over Tables or Text. In S. Feng, H. Wan, C. Yuan, & H. Yu (Eds.), Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering: proceedings of the workshop : DialDoc 2022 : May 26, 2022 (pp. 41–53). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.dialdoc-1.5 [details]
    • Sidiropoulos, G., & Kanoulas, E. (2022). Analysing the Robustness of Dual Encoders for Dense Retrieval Against Misspellings. In SIGIR '22: proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval : July 11-15, 2022, Madrid, Spain (pp. 2132-2136). The Association for Computing Machinery. https://doi.org/10.1145/3477495.3531818 [details]
    • Sidiropoulos, G., Vakulenko, S., & Kanoulas, E. (2022). On the Impact of Speech Recognition Errors in Passage Retrieval for Spoken Question Answering. In CIKM '22: proceedings of the 31st ACM International Conference on Information & Knowledge Management : October 17-21, 2022, Atlanta, GA, USA (pp. 4485-4489). The Association for Computing Machinery. https://doi.org/10.1145/3511808.3557662 [details]

    2021

    • Aliannejadi, M., Azzopardi, L., Zamani, H., Kanoulas, E., Thomas, P., & Craswell, N. (2021). Analysing Mixed Initiatives and Search Strategies during Conversational Search. In CIKM '21: proceedings of the 30th ACM International Conference on Information & Knowledge Management : November 1-5, 2021, virtual event, Australia (pp. 16-26). The Association for Computing Machinery. https://doi.org/10.1145/3459637.3482231 [details]
    • Aliannejadi, M., Bonab, H., Vardasbi, A., Kanoulas, E., Allan, J., & Murdock, V. (2021). XMRec: Workshop on Cross-Market Recommendation. In RECSYS 2021: 15th ACM Conference on Recommender Systems : 27th September-1st October 2021, Amsterdam, Netherlands (pp. 817-818). The Association for Computing Machinery. https://doi.org/10.1145/3460231.3470934 [details]
    • Bonab, H., Aliannejadi, M., Vardasbi, A., Kanoulas, E., & Allan, J. (2021). Cross-Market Product Recommendation. In CIKM '21: proceedings of the 30th ACM International Conference on Information & Knowledge Management : November 1-5, 2021, virtual event, Australia (pp. 110-119). The Association for Computing Machinery. https://doi.org/10.1145/3459637.3482493 [details]
    • Li, D., Ren, Z., & Kanoulas, E. (2021). CrowdGP: A Gaussian process model for inferring relevance from crowd annotations. In The Web Conference 2021: proceedings of the World Wide Web Conference WWW 2021 : April 19-23, 2021, Ljubljana, Slovenia (pp. 1821-1832). Association for Computing Machinery. https://doi.org/10.1145/3442381.3450047 [details]
    • Provatorova, V., Bhargav, S., Vakulenko, S., & Kanoulas, E. (2021). Robustness Evaluation of Entity Disambiguation Using Prior Probes: the Case of Entity Overshadowing. In M-C. Moens, X. Huang, L. Specia, & S. W. Yih (Eds.), 2021 Conference on Empirical Methods in Natural Language Processing: EMNLP 2021 : proceedings of the conference : November 7-11, 2021 (pp. 10501-10510). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.emnlp-main.820 [details]
    • Ren, P., Chen, Z., Ren, Z., Kanoulas, E., Monz, C., & de Rijke, M. (2021). Conversations with Search Engines: SERP-based Conversational Response Generation. ACM Transactions on Information Systems, 39(4), Article 47. https://doi.org/10.1145/3432726 [details]
    • Rossi, J., Vakulenko, S., & Kanoulas, E. (2021). VerbCL: A Dataset of Verbatim Quotes for Highlight Extraction in Case Law. In CIKM '21: proceedings of the 30th ACM International Conference on Information & Knowledge Management : November 1-5, 2021, virtual event, Australia (pp. 4554-4563). The Association for Computing Machinery. https://doi.org/10.1145/3459637.3482021 [details]
    • Sidiropoulos, G., Voskarides, N., Vakulenko, S., & Kanoulas, E. (2021). Combining Lexical and Dense Retrieval for Computationally Efficient Multi-hop Question Answering. In Proceedings of SustaiNLP: 2nd Workshop on Simple and Efficient Natural Language Processing (SustaiNLP) : SustaiNLP 2021 (pp. 58–63). Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.sustainlp-1.7 [details]
    • Vakulenko, S., Kanoulas, E., & de Rijke, M. (2021). A Large-Scale Analysis of Mixed Initiative in Information-Seeking Dialogues for Conversational Search. ACM Transactions on Information Systems, 39(4), Article 49. Advance online publication. https://doi.org/10.1145/3466796 [details]

    2020

    • Krasakis, A. M., Aliannejadi, M., Voskarides, N., & Kanoulas, E. (2020). Analysing the Effect of Clarifying Questions on Document Ranking in Conversational Search. In ICTIR'20: proceedings of the 2020 ACM SIGIR International Conference on Theory of Information Retrieval : September 14-17, 2020, Virtual Event, Norway (pp. 129-132). The Association for Computing Machinery. https://doi.org/10.1145/3409256.3409817 [details]
    • Li, D., & Kanoulas, E. (2020). When to Stop Reviewing in Technology-Assisted Reviews: Sampling from an Adaptive Distribution to Estimate Residual Relevant Documents. ACM Transactions on Information Systems, 38(4), Article 41. https://doi.org/10.1145/3411755 [details]
    • Li, D., Zafeiriadis, P., & Kanoulas, E. (2020). APS: An Active PubMed Search System for Technology Assisted Reviews. In SIGIR '20: proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval : July 25-30, 2020, virtual event, China (pp. 2137-2140). Association for Computing Machinery. https://doi.org/10.1145/3397271.3401401 [details]
    • Vakulenko, S., Kanoulas, E., & de Rijke, M. (2020). An Analysis of Mixed Initiative and Collaboration in Information-Seeking Dialogues. In SIGIR '20: proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval : July 25-30, 2020, virtual event, China (pp. 2085-2088). Association for Computing Machinery. https://doi.org/10.1145/3397271.3401297 [details]
    • Voskarides, N., Li, D., Ren, P., Kanoulas, E., & de Rijke, M. (2020). Query Resolution for Conversational Search with Limited Supervision. In SIGIR '20: proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval : July 25-30, 2020, virtual event, China (pp. 921-930). Association for Computing Machinery. https://doi.org/10.1145/3397271.3401130 [details]
    • Wu, C., Kanoulas, E., & de Rijke, M. (2020). It All Starts with Entities: A Salient Entity Topic Model. Natural Language Engineering, 26(5), 531-549. Advance online publication. https://doi.org/10.1017/S1351324919000585 [details]
    • Wu, C., Kanoulas, E., & de Rijke, M. (2020). Learning entity-centric document representations using an entity facet topic model. Information Processing and Management, 57(3), Article 102216. https://doi.org/10.1016/j.ipm.2020.102216 [details]
    • Wu, C., Kanoulas, E., de Rijke, M., & Lu, W. (2020). WN-Salience: A Corpus of News Articles with Entity Salience Annotations. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), LREC 2020: Twelfth International Conference on Language Resources and Evaluation : May 11-16, 2020, Palais du Pharo, Marseille, France : conference proceedings (pp. 2095-2102). The European Language Resources Association. https://www.aclweb.org/anthology/2020.lrec-1.257 [details]
    • Zou, J., & Kanoulas, E. (2020). Towards Question-based High-recall Information Retrieval: Locating the Last Few Relevant Documents for Technology-assisted Reviews. ACM Transactions on Information Systems, 38(3), Article 27. https://doi.org/10.1145/3388640 [details]
    • Zou, J., Chen, Y., & Kanoulas, E. (2020). Towards Question-based Recommender Systems. In SIGIR '20: proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval : July 25-30, 2020, virtual event, China (pp. 881-890). Association for Computing Machinery. https://doi.org/10.1145/3397271.3401180 [details]
    • Zou, J., Kanoulas, E., & Liu, Y. (2020). An Empirical Study on Clarifying Question-Based Systems. In CIKM '20: proceedings of the 29th ACM International Conference on Information & Knowledge Management : October 19-23, 2020, Virtual Event, Ireland (pp. 2361-2364). The Association for Computing Machinery. https://doi.org/10.1145/3340531.3412094 [details]

    2019

    • Kanoulas, E., Li, D., Azzopardi, L., & Spijker, R. (2019). CLEF 2019 technology assisted reviews in empirical medicine overview. In L. Cappellato, N. Ferro, D. E. Losada, & H. Müller (Eds.), Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum: Lugano, Switzerland, September 9-12, 2019 Article 250 (CEUR Workshop Proceedings; Vol. 2380). CEUR-WS. http://ceur-ws.org/Vol-2380/paper_250.pdf [details]
    • Kelly, L., Goeuriot, L., Suominen, H., Neves, M., Kanoulas, E., Spijker, R., Azzopardi, L., Li, D., Jimmy, Palotti, J., & Zuccon, G. (2019). CLEF ehealth 2019 evaluation lab. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, & D. Hiemstra (Eds.), Advances in Information Retrieval: 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, April 14-18, 2019 : proceedings (Vol. 2, pp. 267-274). (Lecture Notes in Computer Science; Vol. 11438). Springer. https://doi.org/10.1007/978-3-030-15719-7_36 [details]
    • Kelly, L., Suominen, H., Goeuriot, L., Neves, M., Kanoulas, E., Li, D., Azzopardi, L., Spijker, R., Zuccon, G., Scells, H., & Palotti, J. (2019). Overview of the CLEF eHealth Evaluation Lab 2019. In F. Crestani, M. Braschler, J. Savoy, A. Rauber, H. Müller, D. E. Losada, G. Heinatz Bürki, L. Cappellato, & N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction: 10th International Conference of the CLEF Association, CLEF 2019, Lugano, Switzerland, September 9–12, 2019 : proceeding (pp. 322-339). (Lecture Notes in Computer Science; Vol. 11696). Springer. https://doi.org/10.1007/978-3-030-28577-7_26 [details]
    • Li, D., & Kanoulas, E. (2019). Automatic thresholding by sampling documents and estimating recall: ILPs@UVA at Tar task 2.2. In L. Cappellato, N. Ferro, D. E. Losada, & H. Müller (Eds.), Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum: Lugano, Switzerland, September 9-12, 2019 Article 187 (CEUR Workshop Proceedings; Vol. 2380). CEUR-WS. http://ceur-ws.org/Vol-2380/paper_187.pdf [details]
    • Liang, S., Yilmaz, E., & Kanoulas, E. (2019). Collaboratively Tracking Interests for User Clustering in Streams of Short Texts. IEEE Transactions on Knowledge and Data Engineering, 31(2), 257-272. Advance online publication. https://doi.org/10.1109/TKDE.2018.2832211 [details]
    • Norman, C., Leeflang, M., Spijker, R., Kanoulas, E., & Névéol, A. (2019). A distantly supervised dataset for automated data extraction from diagnostic studies. In D. Demner-Fushman, K. B. Cohen, S. Ananiadou, & J. Tsujii (Eds.), SIGBioMed Workshop on Biomedical Natural Language Processing: BioNLP 2019 : Proceedings of the 18th BioNLP Workshop and Shared Task : August 1, 2019, Florence, Italy (pp. 105-114). The Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-5012 [details]
    • Rossi, J., & Kanoulas, E. (2019). Legal Search in Case Law and Statute Law. In M. Araszkiewicz, & V. Rodríguez-Doncel (Eds.), Legal Knowledge and Information Systems: JURIX 2019: The Thirty-second Annual Conference (pp. 83-92). (Frontiers in Artificial Intelligence and Applications; Vol. 322). IOS Press. https://doi.org/10.3233/FAIA190309 [details]
    • Zou, J., & Kanoulas, E. (2019). Learning to Ask: Question-based Sequential Bayesian Product Search. In CIKM'19: Proceedings of the 28th ACM International Conference on Information & Knowledge Management : November 3-7, 2019, Beijing, China (pp. 369-378). Association for Computing Machinery. https://doi.org/10.1145/3357384.3357967 [details]
    • van Dijk, D., Ferrante, M., Ferro, N., & Kanoulas, E. (2019). A Markovian Approach to Evaluate Session-based IR Systems. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, & D. Hiemstra (Eds.), Advances in Information Retrieval: 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, April 14-18, 2019 : proceedings (Vol. 1, pp. 621-635). (Lecture Notes in Computer Science; Vol. 11437). Springer. https://doi.org/10.1007/978-3-030-15712-8_40 [details]

    2018

    • Inel, O., Haralabopoulos, G., Li, D., Van Gysel, C., Szlávik, Z., Simperl, E., Kanoulas, E., & Aroyo, L. (2018). Studying Topical Relevance with Evidence-based Crowdsourcing. In CIKM '18: proceedings of the 2018 ACM International Conference on Information and Knowledge Management : October 22-26, 2018, Torino, Italy (pp. 1253-1262). The Association for Computing Machinery. https://doi.org/10.1145/3269206.3271779 [details]
    • Kanoulas, E., Azzopardi, L., & Yang, G. H. (2018). Overview of the CLEF dynamic search evaluation lab 2018. In P. Bellot, C. Trabelsi, J. Mothe, F. Murtagh, J. Y. Nie, L. Soulier, E. SanJuan, L. Cappellato, & N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction: 9th International Conference of the CLEF Association, CLEF 2018, Avignon, France, September 10-14, 2018 : Proceedings (pp. 362-371). (Lecture Notes in Computer Science; Vol. 11018). Springer. https://doi.org/10.1007/978-3-319-98932-7_31 [details]
    • Li, D., & Kanoulas, E. (2018). Bayesian Optimization for Optimizing Retrieval Systems. In WSDM'18: proceedings of the Eleventh ACM International Conference on Web Search and Data Mining : February 5-9, 2018, Marina Del Rey, CA, USA (pp. 360-368). Association for Computing Machinery. https://doi.org/10.1145/3159652.3159665 [details]
    • Liang, S., Zhang, X., Ren, Z., & Kanoulas, E. (2018). Dynamic embeddings for user profiling in Twitter. In KDD '18 : proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining: August 19-23, 2018, London, United Kingdom (pp. 1764-1773). Association for Computing Machinery. https://doi.org/10.1145/3219819.3220043 [details]
    • Linmans, J., van de Velde, B., & Kanoulas, E. (2018). Improved and Robust Controversy Detection in General Web Pages Using Semantic Approaches under Large Scale Conditions. In CIKM'18: proceedings of the 2018 ACM International Conference on Information and Knowledge Management : October 22-26, 2018, Torino, Italy (pp. 1647-1650). The Association for Computing Machinery. https://doi.org/10.1145/3269206.3269301 [details]
    • Rossi, J., & Kanoulas, E. (2018). Query Generation for Patent Retrieval with Keyword Extraction based on Syntactic Features. In M. Palmirani (Ed.), Legal Knowledge and Information Systems: JURIX 2018: The Thirty-first Annual Conference (pp. 210-214). (Frontiers in Artificial Intelligence and Aplications; Vol. 313). IOS Press. https://doi.org/10.3233/978-1-61499-935-5-210 [details]
    • Scheepers, T., Kanoulas, E., & Gavves, E. (2018). Improving Word Embedding Compositionality using Lexicographic Definitions. In The Web Conference 2018: companion of the World Wide Web Conference WWW2018 : April 23-27, 2018, Lyon, France (pp. 1083-1093). International World Wide Web Conferences Steering Committee. https://doi.org/10.1145/3178876.3186007 [details]
    • Suominen, H., Kelly, L., Goeuriot, L., Névéol, A., Ramadier, L., Robert, A., Kanoulas, E., Spijker, R., Azzopardi, L., Li, D., Jimmy, Palotti, J., & Zuccon, G. (2018). Overview of the CLEF eHealth Evaluation Lab 2018. In P. Bellot, C. Trabelsi, J. Mothe, F. Murtagh, J. Y. Nie, L. Soulier, E. SanJuan, L. Cappellato, & N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction: 9th International Conference of the CLEF Association, CLEF 2018, Avignon, France, September 10-14, 2018 : Proceedings (pp. 286-301). (Lecture Notes in Computer Science; Vol. 11018). Springer. https://doi.org/10.1007/978-3-319-98932-7_26 [details]
    • Van Gysel, C., de Rijke, M., & Kanoulas, E. (2018). Mix 'n Match: Integrating Text Matching and Product Substitutability within Product Search. In CIKM '18: proceedings of the 2018 ACM International Conference on Information and Knowledge Management : October 22-26, 2018, Torino, Italy (pp. 1373-1382). The Association for Computing Machinery. https://doi.org/10.1145/3269206.3271668 [details]
    • Van Gysel, C., de Rijke, M., & Kanoulas, E. (2018). Neural vector spaces for unsupervised information retrieval. ACM Transactions on Information Systems, 36(4), Article 38. https://doi.org/10.1145/3196826 [details]
    • Zou, J., Li, D., & Kanoulas, E. (2018). Technology assisted reviews: Finding the last few relevant documents by asking yes/no questions to reviewers. In SIGIR #41 proceedings : Ann Arbor, Michigan, USA, 08-12, July 2018 (pp. 949-952). Association for Computing Machinery. https://doi.org/10.1145/3209978.3210102 [details]

    2017

    • Beelen, K., Kanoulas, E., & van de Velde, R. (2017). Detecting Controversies in Online News Media. In SIGIR'17 : proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval: August 7-11, 2017, Shinjuku, Tokyo, Japan (pp. 1069-1072). Association for Computing Machinery. https://doi.org/10.1145/3077136.3080723 [details]
    • Goeuriot, L., Kelly, L., Suominen, H., Névéol, A., Robert, A., Kanoulas, E., Spijker, R., Palotti, J., & Zuccon, G. (2017). CLEF 2017 eHealth evaluation lab overview. In G. J. F. Jones, S. Lawless, J. Gonzalo, L. Kelly, L. Goeuriot, T. Mandl, L. Cappellato, & N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction: 8th International Conference of the CLEF Association, CLEF 2017, Dublin, Ireland, September 11–14, 2017 : proceedings (pp. 291-303). (Lecture Notes in Computer Science; Vol. 10456). Springer. https://doi.org/10.1007/978-3-319-65813-1_26 [details]
    • Gârbacea, C., & Kanoulas, E. (2017). A systematic analysis of sentence update detection for temporal summarization. In J. M. Jose, C. Hauff, I. S. Altıngovde, D. Song, D. Albakour, S. Watt, & J. Tait (Eds.), Advances in Information Retrieval: 39th European Conference on IR Research, ECIR 2017, Aberdeen, UK, April 8–13, 2017 : proceedings (pp. 424-436). (Lecture Notes in Computer Science; Vol. 10193). Springer. https://doi.org/10.1007/978-3-319-56608-5_33 [details]
    • Kanoulas, E., & Azzopardi, L. (2017). CLEF 2017 Dynamic Search Lab Overview And Evaluation. In L. Cappellato, N. Ferro, L. Goeuriot, & T. Mandl (Eds.), Working Notes of CLEF 2017 - Conference and Labs of the Evaluation Forum: Dublin, Ireland, September 11-14, 2017 (CEUR Workshop Proceedings; Vol. 1866). CEUR-WS. http://ceur-ws.org/Vol-1866/invited_paper_13.pdf [details]
    • Kanoulas, E., & Azzopardi, L. (2017). CLEF 2017 dynamic search evaluation lab overview. In G. J. F. Jones, S. Lawless, J. Gonzalo, L. Kelly, L. Goeuriot, T. Mandl, L. Cappellato, & N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction: 8th International Conference of the CLEF Association, CLEF 2017, Dublin, Ireland, September 11–14, 2017 : proceedings (pp. 361-366). (Lecture Notes in Computer Science; Vol. 10456). Springer. https://doi.org/10.1007/978-3-319-65813-1_31 [details]
    • Kanoulas, E., Li, D., Azzopardi, L., & Spijker, R. (2017). CLEF 2017 Technologically Assisted Reviews in Empirical Medicine Overview. In L. Cappellato, N. Ferro, L. Goeuriot, & T. Mandl (Eds.), Working Notes of CLEF 2017 - Conference and Labs of the Evaluation Forum: Dublin, Ireland, September 11-14, 2017 (CEUR Workshop Proceedings; Vol. 1866). CEUR-WS. http://ceur-ws.org/Vol-1866/invited_paper_12.pdf [details]
    • Li, D., & Kanoulas, E. (2017). Active Sampling for Large-scale Information Retrieval Evaluation. In CIKM'17 : proceedings of the 2017 ACM on Conference on Information and Knowledge Management: November 6-10, 2017, Singapore, Singapore (pp. 49-58). Association for Computing Machinery. https://doi.org/10.1145/3132847.3133015 [details]
    • Liang, S., Ren, Z., Yilmaz, E., & Kanoulas, E. (2017). Collaborative User Clustering for Short Text Streams. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, Twenty-Ninth Innovative Applications of Artificial Intelligence Conference, Seventh Symposium on Educational Advances in Artificial Intelligence: 4-9 February 2017, San Francisco, California, USA (Vol. 5, pp. 3504-3510). AAAI Press. https://ojs.aaai.org/index.php/AAAI/article/view/11011 [details]
    • Van Gysel, C., Kanoulas, E., & de Rijke, M. (2017). Pyndri: a Python Interface to the Indri Search Engine. In J. M. Jose, C. Hauff, I. S. Altıngovde, D. Song, D. Albakour, S. Watt, & J. Tait (Eds.), Advances in Information Retrieval: 39th European Conference on IR Research, ECIR 2017, Aberdeen, UK, April 8–13, 2017 : proceedings (pp. 744-748). (Lecture Notes in Computer Science; Vol. 10193). Springer. https://doi.org/10.1007/978-3-319-56608-5_74 [details]
    • Van Gysel, C., de Rijke, M., & Kanoulas, E. (2017). Semantic Entity Retrieval Toolkit. In Neu-IR: Workshop on Neural Information Retrieval: accepted papers ArXiv. https://arxiv.org/abs/1706.03757 [details]
    • Van Gysel, C., de Rijke, M., & Kanoulas, E. (2017). Structural Regularities in Text-based Entity Vector Spaces. In ICTIR'17: proceedings of the 2017 ACM SIGIR International Conference on the Theory of Information Retrieval: October 1-4, 2017, Amsterdam, the Netherlands (pp. 3-10). Association for Computing Machinery. https://doi.org/10.1145/3121050.3121066 [details]

    2016

    • Azarbonyad, H., & Kanoulas, E. (2016). Power Analysis for Interleaving Experiments by Means of Offline Evaluation. In ICTIR'16: Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval : September 12-16, 2016, Newark, Delaware, USA (pp. 87-90). Association for Computing Machinery. https://doi.org/10.1145/2970398.2970432 [details]
    • Carterette, B., Clough, P., Hall, M., Kanoulas, E., & Sanderson, M. (2016). Evaluating Retrieval over Sessions: The TREC Session Track 2011-2014. In SIGIR'16: the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval: Pisa, Italy , July 17-21, 2016 (pp. 685-688). Association for Computing Machinery. https://doi.org/10.1145/2911451.2914675 [details]
    • Liang, S., Yilmaz, E., & Kanoulas, E. (2016). Dynamic Clustering of Streaming Short Documents. In KDD'16: proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining : August 13-17, 2016, San Francisco, CA, USA (pp. 995-1004). Association for Computing Machinery. https://doi.org/10.1145/2939672.2939748 [details]
    • Lipani, A., Lupu, M., Kanoulas, E., & Hanbury, A. (2016). The Solitude of Relevant Documents in the Pool. In CIKM'16: proceedings of the 2016 ACM Conference on Information and Knowledge Management : October 24-28, 2016, Indianapolis, IN, USA (pp. 1989-1992). Association for Computing Machinery. https://doi.org/10.1145/2983323.2983891 [details]
    • Van Gysel, C., Kanoulas, E., & de Rijke, M. (2016). Lexical query modeling in session search. In ICTIR'16: proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval : September 12-16, 2016, Newark, Delaware, USA (pp. 69-72). The Association for Computing Machinery. https://doi.org/10.1145/2970398.2970422 [details]
    • Van Gysel, C., de Rijke, M., & Kanoulas, E. (2016). Learning Latent Vector Spaces for Product Search. In CIKM'16: proceedings of the 2016 ACM Conference on Information and Knowledge Management : October 24-28, 2016, Indianapolis, IN, USA (pp. 165-174). Association for Computing Machinery. https://doi.org/10.1145/2983323.2983702 [details]

    2011

    • Dai, K., Kanoulas, E., Pavlu, V., & Aslam, J. A. (2011). Variational bayes for modeling score distributions. Information Retrieval, 14(1), 47-67. https://doi.org/10.1007/s10791-010-9156-2
    • Holliday, J. D., Kanoulas, E., Malim, N., & Willett, P. (2011). Multiple search methods for similarity-based virtual screening: analysis of search overlap and precision. Journal of Cheminformatics, 3. https://doi.org/10.1186/1758-2946-3-29

    2007

    • Kanoulas, E., Aslam, J. A., Sharp, G. C., Berbeco, R. I., Nishioka, S., Shirato, H., & Jiang, S. B. (2007). Derivation of the tumor position from external respiratory surrogates with periodical updating of the internal/external correlation. Physics in Medicine and Biology, 52(17), 5443-5456. https://doi.org/10.1088/0031-9155/52/17/023

    2004

    • Salzberg, B., Jiang, L., Lomet, D., Barrena, M., Shan, J., & Kanoulas, E. (2004). A framework for access methods for versioned data. In Advances in Database Technology - EDBT 2004: 9th International Conference on Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004 (pp. 730-747). (Lecture Notes in Computer Science; Vol. 2992). Springer. https://doi.org/10.1007/978-3-540-24741-8_42

    2021

    2018

    • Kanoulas, E., Li, D., Azzopardi, L., & Spijker, R. (2018). CLEF 2018 technologically assisted reviews in empirical medicine overview. In L. Cappellato, N. Ferro, J.-Y. Nie, & L. Soulier (Eds.), Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum: Avignon, France, September 10-14, 2018 (CEUR Workshop Proceedings; Vol. 2125). CEUR-WS. http://ceur-ws.org/Vol-2125/invited_paper_6.pdf [details]

    2017

    • Fang, H., Kamps, J., Kanoulas, E., de Rijke, M., & Yilmaz, E. (2017). Report on the 2017 ACM SIGIR International Conference Theory of Information Retrieval (ICTIR'17): conference report. SIGIR Forum, 51(3), 78-87. https://doi.org/10.1145/3190580.3190591 [details]
    • Kamps, J., Kanoulas, E., de Rijke, M., Fang, H., & Yilmaz, E. (2017). Chairs' welcome. In ICTIR'17: proceedings of the 2017 ACM SIGIR International Conference on the Theory of Information Retrieval: October 1-4, 2017, Amsterdam, the Netherlands (pp. iii). Association for Computing Machinery. https://dl.acm.org/citation.cfm?id=3121050 [details]
    • Kamps, J., Kanoulas, E., de Rijke, M., Fang, H., & Yilmaz, E. (Eds.) (2017). ICTIR'17: proceedings of the 2017 ACM SIGIR International Conference on the Theory of Information Retrieval: October 1-4, 2017, Amsterdam, the Netherlands. Association for Computing Machinery. http://dl.acm.org/citation.cfm?id=3121050 [details]
    • Kanoulas, E., & Karlgren, J. (2017). Practical Issues in Information Access System Evaluation: BCS-IRSG Search Solutions Workshop Report. SIGIR Forum, 51(1), 67-72. https://doi.org/10.1145/3130332.3130344 [details]

    2016

    • Gârbacea, C., & Kanoulas, E. (2016). The University of Amsterdam (ILPS.UvA) at TREC 2015 Temporal Summarization Track. In E. M. Voorhees, & A. Ellis (Eds.), The Twenty-Fourth Text REtrieval Conference (TREC 2015) Proceedings (NIST Special Publication; No. SP 500-321). National Institute of Standards and Technology. https://trec.nist.gov/pubs/trec24/papers/UvA.ILPS-TS.pdf [details]
    • Quiroz, L., Mennes, L., Dehghani, M., & Kanoulas, E. (2016). Distributional Semantics for Medical Information Extraction. In K. Balog, L. Cappellato, N. Ferro, & C. Macdonald (Eds.), Working Notes of CLEF 2016 - Conference and Labs of the Evaluation forum: Évora, Portugal, 5-8 September, 2016 (pp. 109-122). (CEUR Workshop Proceedings; Vol. 1609). CEUR-WS. http://ceur-ws.org/Vol-1609/16090109.pdf [details]
    • Yilmaz, E., Kanoulas, E., Verma, M., Carterette, B., Craswell, N., & Mehrotra, R. (2016). Overview of the TREC 2015 Tasks Track. In E. M. Voorhees, & A. Ellis (Eds.), The Twenty-Fourth Text REtrieval Conference (TREC 2015) Proceedings (NIST Special Publication; No. SP 500-321). National Institute of Standards and Technology. https://trec.nist.gov/pubs/trec24/papers/Overview-T.pdf [details]
    • van Dijk, D., Ren, Z., Kanoulas, E., & de Rijke, M. (2016). The University of Amsterdam (ILPS) at TREC 2015 Total Recall Track. In E. M. Voorhees, & A. Ellis (Eds.), The Twenty-Fourth Text REtrieval Conference (TREC 2015) Proceedings (NIST Special Publication; No. SP 500-321). National Institute of Standards and Technology. https://trec.nist.gov/pubs/trec24/papers/UvA.ILPS-TR.pdf [details]

    2023

    • Voorveld, H. A. M., Pantelli, A., Schirris, Y., Ischen, C., Kanoulas, E., & Lentz, T. (2023). Investigating the Persuasiveness of Conversational Text and Voice Agents: The Role of Prosody.. Abstract from ICORIA 2023, Bordeaux, France.

    2020

    • Sidiropoulos, G., Voskarides, N., & Kanoulas, E. (2020). Knowledge Graph Simple Question Answering for Unseen Domains. Paper presented at 2nd Conference on Automated Knowledge Base Construction. https://doi.org/10.24432/C5H01X

    2019

    • Krasakis, A. M., Kanoulas, E., & Tsatsaronis, G. (2019). Semi-supervised Ensemble Learning with Weak Supervision for Biomedical Relationship Extraction. Paper presented at Conference on Automated Knowledge Base Construction, Amherst, Massachusetts, United States. https://openreview.net/forum?id=rygDeZqap7
    • Rietveld, R., Kanoulas, E., & Rossi, J. (2019). Distilling Jurisprudence through Argument Mining for Case Assessment. Paper presented at 1st International Workshop on AI and Intelligent Assistance for Legal Professionals in the Digital Workplace (LegalAIIA), Montreal, Quebec, Canada. https://drive.google.com/file/d/1k9BEmmKFocDEm9O6Ck0WXZgFNjnXoQ_Q/view
    • Rossi, J., & Kanoulas, E. (2019). Legal Information Retrieval with Generalized Language Models: ILPS Participation to COLIEE 2019. Paper presented at COLIEE 2019, Montreal, Quebec, Canada.
    • Siegel, J., van Dolen, W. M., Kanoulas, E., & Efthymiou, A. (2019). Empowering Service Employees to Manage Deceptive Consumer Behavior. Paper presented at Quis 16, Karlstad, Sweden.

    2017

    • Mironenco, M., Kianfar, D., Tran, M. K., Kanoulas, E., & Gavves, E. (2017). Examining Cooperation in Visual Dialog Models.
    • Timmermans, B., Aroyo, L., Kuhn, T., Beelen, K., van de Velde, R. N., Kanoulas, E., & van Eerten, G. (2017). ControCurator: Understanding Controversy Using Collective Intelligence. Paper presented at collective intelligence conference, New York, New York, United States.

    Talk / presentation

    • Petcu, R. (speaker), Kanoulas, E. (speaker) & Hasibi, F. (speaker) (21-10-2023). Tutorial on Data Augmentation for Conversational AI, 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, Birmingham. https://dataug-convai.github.io/

    Others

    • Grotov, A. (organiser), Van Gysel, C. J. H. (organiser), Kanoulas, E. (organiser), Azarbonyad, H. (organiser), Voskarides, N. (organiser), Best, P. (organiser) & Li, X. (organiser) (27-11-2015). DIR2015, Amsterdam. Proceedings of 14th Dutch-Belgian Information Retrieval Workshop (organising a conference, workshop, ...). http://dir2015.nl/wp-content/uploads/sites/8/2015/11/DIR2015-proceedings.pdf

    2025

    • Sidiropoulos, G. (2025). Improving the robustness and effectiveness of neural retrievers in noisy and low-resource settings. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2024

    • Bhargav, S. (2024). Navigating uncertain waters in information retrieval: Adapting to domain shifts and complex information needs. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2023

    • Kobayashi, V. B. (2023). Text analytics applications in job analysis and career research. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2021

    • Zou, J. (2021). Improving search and recommendation by asking clarifying questions. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2020

    • Li, D. (2020). Effective collection construction for information retrieval evaluation and optimization. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
    • Oosterhuis, H. R. (2020). Learning from user interactions with rankings: A unification of the field. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
    • Wu, C. (2020). Entity-centric document understanding: Entity aspects and salience. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2018

    • Li, X. (2018). Mining information interaction behavior: Academic papers and enterprise emails. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2017

    • Chuklin, A. (2017). Understanding and modeling users of modern search engines. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
    • Van Gysel, C. J. H. (2017). Remedies against the vocabulary gap in information retrieval. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2016

    • Ren, Z. (2016). Monitoring social media: Summarization, classification and recommendation. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2024

    2023

    2022

    2021

    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    • Huawei Netherlands B.V.
      Consulting on search and recommendation.
    • ELLOGON AI B.V.
      R&D and managment
    • LetYourDataSpeak B.V.
      Shareholder and partner in LetYourDataSpeak B.V. advising on generative AI.